Analysis and Regularization of Problems in Diffuse Optical Tomography
نویسندگان
چکیده
In this paper we consider the regularization of the inverse problem of diffuse optical tomography by standard regularization methods with quadratic penalty terms. We therefore investigate in detail the properties of the associated forward operators, and derive continuity and differentiability results, which are based on derivation of W 1,p regularity results for the governing elliptic boundary value problems. We then show that Tikhonov regularization can be applied for a stable solution, and that the standard convergence and convergence rates results hold. Our analysis also ensure convergence of iterative regularization methods, which are important from a practical point of view.
منابع مشابه
An Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملImage quality improvement of diffuse optical tomography of breast tumor using artificial intelligence
This article has no abstract.
متن کاملOptical tomography as a PDE-constrained optimization problem
We report on the implementation of an augmented Lagrangian approach for solving the inverse problems in diffuse optical tomography (DOT). The forward model of light propagation is the radiative transport equation (RTE). The inverse problem is formulated as a minimization problem with the RTE being considered as an equality constraint on the set of ‘optical properties—radiance’ pairs. This appro...
متن کاملA LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.
PURPOSE Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. METHODS The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimizati...
متن کاملFeasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies.
When dealing with ill-posed problems such as fluorescence diffuse optical tomography (fDOT) the choice of the regularization parameter is extremely important for computing a reliable reconstruction. Several automatic methods for the selection of the regularization parameter have been introduced over the years and their performance depends on the particular inverse problem. Herein a U-curve-base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2010